Arrays J

Ray Seyfarth

August 2, 2011

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Arrays

@ An array is a contiguous collection of memory cells of a specific type
@ The start address of an array is the address of the first element

This is associated with the label given before a data definition in the
data segment or a data reservation in the bss segment

The first index of an array in C/C++ and assembly is 0
Each subsequent array cell is at a higher memory address

The final index for an array of n elements is n — 1

Some high level languages use different or user-selectable starting
indices for arrays

Fortran defaults to 1

@ 0 is the most logical first index because it simplifies array address
computation

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Outline

@ Array address computation

© General pattern for memory references
© Allocating arrays

@ Processing arrays

© Command line parameter array

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Scripts to link programs and to execute gdb

@ gdb is aware of addresses of labels but not their types
@ In yasm data definition or reservation is by size of data elements

@ For items in the data segment we can infer the intended type from
the code

@ “a dd 125" is a pretty good clue that an integer
@ “b dd 1.5" tells us that b is a float

@ You can use scripts y1d and ygcc which link programs using either
1d or gcc and prepare files with gdb macros

@ Then using ygdb to run gdb will use these macros to give gdb better
type information

@ With this set of scripts everything is an array

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Array address computation

@ Array elements all have the same size: 1, 2, 4 and 8 are common
@ Suppose an array has elements of size 4 and starts at address
0x10000
» The first element (at index 0) is at 0x10000
» The second element (at index 1) is at 0x10004
» The third element (at index 2) is at 0x10008
» Element number k is at address 0x10000 + kx4

@ Let's examine the arrays for program “array.asm” with gdb and

ygdb
segment .bss
a resb 100
b resd 100
align 8
c resq 100

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

General pattern for memory references

[label] the value contained at label
[label+2*ind] the value contained at the memory address obtained

by adding the label and index register times 2
[label+4*ind] the value contained at the memory address obtained

by adding the label and index register times 4
[label+8*ind] the value contained at the memory address obtained

by adding the label and index register times 8
[reg] the value contained at the memory address in the register
[reg+k*ind] the value contained at the memory address obtained

by adding the register and index register times k
[label+reg+k*ind] the value contained at the memory address obtained

by adding the label, the register and index register times k
[n+reg+k*ind] the value contained at the memory address obtained

by adding n, the register and index register times k

Memory references

For items in the data and bss segments we can use a label

For arrays passed into functions the address is passed in a register

Soon we will be allocating memory using malloc

» This address will typically be stored in memory

> Later to use the data, we must load the address from memory into a
register

» Then we can use a register form of memory reference

The use of a number or a label is equivalent to the computer

Both use the same instruction and place the number or label value
into the same field of the instruction

Using multipliers of 2, 4 or 8 are essentially “free” with index registers

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Example using base registers and an index register

@ In the function below the first parameter is the address of the first
dword of a destination array

@ The second parameter is the address of the source array

@ The third parameter is the number of dwords to copy

o It would generally be faster to use “rep movsd”

segment .text
global copy_array
copy_array:

xor ecx, ecx
more: mov eax, [rsi+4x*rcx]

mov [rdi+4*rcx], eax

add rcx, 1

test rcx, rdx

jne more

xor eax, eax

ret

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Allocating arrays

@ We will allocate arrays using the C malloc function

void #*malloc (long size);

@ The parameter to malloc is the number of bytes to allocate
@ malloc returns the address of the array or 0

@ Data allocated should be freed, although this will happen when a
program exits

void free (void *ptr);

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Code to allocate an array

@ The code below allocates an array of 1 billion bytes

@ It saves the pointer to the new array in memory location named
pointer

extern malloc

mov rdi, 1000000000

call malloc
mov [pointer], rax

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Advantages for using allocated arrays

The array will be the right size
There are size limits of about 2 GB in the data and bss segments

The assembler is very slow with large arrays and the program is large

Assembling a program with a 2 GB array in the bss segment took
about 100 seconds

The executable was over 2 GB

@ Using malloc the program assembles in less than 1 second and the
program as about 10 KB

o Modified to allocate 20 billion bytes the program executes in 3
milliseconds

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Processing arrays

@ We present an application which creates an array
@ Fills the array with random data by calling random
@ Prints the array if the size is small (up to 20 elements)

@ Determines the minimum value in the array

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Creating an array

@ This function allocates an array of double words
@ The number of double words is the only parameter

@ Note the use of a stack frame to avoid any problems of stack
misalignment

; array = create (size);

create:
push rbp
mov rbp, rsp
imul rdi, 4
call malloc
leave
ret

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Filling the array with random numbers

£i11:

.array equ 0

.size equ 8

i equ 16
push rbp
mov rbp, rsp
sub rsp, 32
mov [rsp+.array], rdi
mov [rsp+.sizel, rsi
xor ecx, ecx

.more mov [rsp+.i], rcx
call random
mov rcx, [rsp+.i]
mov rdi, [rsp+.array]
mov [rdi+rcx*4], eax
inc rcx
cmp rcx, [rsp+.sizel
jl .more
leave
ret

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Local labels in yasm

@ Labels beginning with a dot are local labels
@ They are considered part of the previous normal label

@ The .more label could be referenced as £i1ll.more from outside the
£i11 function

@ The £il1 function keeps saving rcx on the stack and restoring rcx
and rdi around the random call

@ This could be easier to code using registers which are preserved across
calls

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Filling the array with random numbers (2)

£ill:
.r12 equ 0
.r13 equ 8
.ri4 equ 16
push rbp
mov rbp, rsp
sub rsp, 32
mov [rsp+.r12], ri12
mov [rsp+.r13], ri13
mov [rsp+.r14], ri4d
mov r12, rdi ; r12 is the array address
mov ri13, rsi ; rl3 is the size
xor ri4d, ri4d ; loop counter
.more call random
mov [r12+r14%4], eax
inc ri4
cmp ri4, ri3
jl .more
mov r12, [rsp+.r12]
mov r13, [rsp+.r13]
mov ri4, [rsp+.ri4]
leave
ret

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Printing the array

print:

.array equ 0

.size equ 8

i equ 16
segment .data

.format:
db "%104",0x0a,0
segment .text

.more lea rdi, [.format]
mov rdx, [rsp+.array]
mov rcx, [rsp+.i]
mov rsi, [rdx+rcx*4]
mov [rsp+.i], rcx
call printf
mov rcx, [rsp+.i]
inc rcx
mov [rsp+.i], rcx
cmp rcx, [rsp+.sizel
jl .more

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Finding the minimum value in the array

@ This function calls no other function
@ There is no need for a stack frame

@ A conditional move is faster than branching

; x = min (a, size);

min:
mov eax, [rdi] ; start with al[O]
mov rcx, 1
.more mov r8d, [rdi+rcx*4] ; get alil
cmp r8d, eax
cmovl eax, rdd ; move if smaller
inc rcx
cmp rcx, rsi
jl .more
ret

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

The main program and testing

@ The code is too long, so we will inspect it in an editor

o It's also time to test with gdb

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Command line parameter array

@ The first argument to main is the number of command line
parameters

@ The second argument is the address of an array of character pointers,
each pointing to one of the parameters

@ Below is a C program illustrating the use of command line parameters

#include <stdio.h>

int main (int argc, char *argv[])

{
int i;
for (i =0; i < argc; i++) {
printf ("%s\n", argv[i]);
}
return O;
}

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

Assembly program listing command line parameters

segment .data

format db "%s",0x0a,0
segment .text
global main ; let the linker know about main
extern printf ; resolve printf from libc
main: push rbp ; prepare stack frame for main
mov rbp, rsp
sub rsp, 16
mov rcx, rsi ; move argv to rcx
mov rsi, [rcx] ; get first argv string
start_loop:
lea rdi, [format]
mov [rsp]l, rcx ; save argv
call printf
mov rcx, [rsp]l ; restore rsi
add rcx, 8 ; advance to next pointer in argv
mov rsi, [rcx] ; get next argv string
cmp rsi, 0O
jnz start_loop ; end with NULL pointer
end_loop:

64 Bit Intel Assembly Language (©2011 Ray Seyfarth

	Array address computation
	General pattern for memory references
	Allocating arrays
	Processing arrays
	Command line parameter array

