
Computing Correlation

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Correlation

2 Correlation in C

3 Implementation using SSE instructions

4 Implementation using AVX instructions

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Correlation

First the definition of correlation

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Next a formula more amenable to computation

rxy =
n
∑

xiyi −
∑

xi
∑

yi√
n
∑

x2i − (
∑

xi)2
√
n
∑

y2i − (
∑

yi)2

This formula requires computing 5 sums while processing the 2 arrays

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

A simple C solution

#include <math.h>

double corr (double x[], double y[], long n)

{

double sum_x, sum_y, sum_xx, sum_yy, sum_xy;

long i;

sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0.0;

for (i = 0; i < n; i++) {

sum_x += x[i];

sum_y += y[i];

sum_xx += x[i]*x[i];

sum_yy += y[i]*y[i];

sum_xy += x[i]*y[i];

}

return (n*sum_xy-sum_x*sum_y)/

sqrt((n*sum_xx-sum_x*sum_x)*(n*sum_yy-sum_y*sum_y));

}

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Simple C solution results

gcc used all 16 XMM registers

It unrolled the basic loop 4 times

Is also handled non multiple of 4 array sizes

Performing 1 million calls for arrays of size 10000 used 13.44 seconds
for 5.9 GFLOPS

Excellent for compiled code

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

SSE implementation

The XMM registers were used to accumulate partial sums for the
various sums

10 registers were used to hold 4 partial sums for each of the 5
required sums

After the main loop the partial sums were added together

Horizontal adds were used to add the 2 halves of registers

Then the correlation was computed

1 million calls for arrays of size 10000 used 6.74 seconds or 11.8
GFLOPS

This is about 3.5 double precision floating point results per CPU cycle

Quite impressive

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

AVX implementation

The YMM registers were used to accumulate partial sums for the
various sums

10 registers were used to hold 8 partial sums for each of the 5
required sums

After the main loop the partial sums were added together

Horizontal adds were used to add the numbers in the 2 halves of
registers

Unfortunately this was not quite enough to add all 4 values

A little more bit wrangling was required to add the partial sums

Then the correlation was computed

1 million calls for arrays of size 10000 used 3.9 seconds or 20.5
GFLOPS

This is about 6 double precision floating point results per CPU cycle

Amazing for 1 core of a 4 core CPU

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Correlation
	Correlation in C
	Implementation using SSE instructions
	Implementation using AVX instructions

