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Correlation

First the definition of correlation

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Next a formula more amenable to computation

rxy =
n
∑

xiyi −
∑

xi
∑

yi√
n
∑

x2i − (
∑

xi )2
√
n
∑

y2i − (
∑

yi )2

This formula requires computing 5 sums while processing the 2 arrays
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A simple C solution

#include <math.h>

double corr ( double x[], double y[], long n )

{

double sum_x, sum_y, sum_xx, sum_yy, sum_xy;

long i;

sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0.0;

for ( i = 0; i < n; i++ ) {

sum_x += x[i];

sum_y += y[i];

sum_xx += x[i]*x[i];

sum_yy += y[i]*y[i];

sum_xy += x[i]*y[i];

}

return (n*sum_xy-sum_x*sum_y)/

sqrt((n*sum_xx-sum_x*sum_x)*(n*sum_yy-sum_y*sum_y));

}
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Simple C solution results

gcc used all 16 XMM registers

It unrolled the basic loop 4 times

Is also handled non multiple of 4 array sizes

Performing 1 million calls for arrays of size 10000 used 13.44 seconds
for 5.9 GFLOPS

Excellent for compiled code
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SSE implementation

The XMM registers were used to accumulate partial sums for the
various sums

10 registers were used to hold 4 partial sums for each of the 5
required sums

After the main loop the partial sums were added together

Horizontal adds were used to add the 2 halves of registers

Then the correlation was computed

1 million calls for arrays of size 10000 used 6.74 seconds or 11.8
GFLOPS

This is about 3.5 double precision floating point results per CPU cycle

Quite impressive
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AVX implementation

The YMM registers were used to accumulate partial sums for the
various sums

10 registers were used to hold 8 partial sums for each of the 5
required sums

After the main loop the partial sums were added together

Horizontal adds were used to add the numbers in the 2 halves of
registers

Unfortunately this was not quite enough to add all 4 values

A little more bit wrangling was required to add the partial sums

Then the correlation was computed

1 million calls for arrays of size 10000 used 3.9 seconds or 20.5
GFLOPS

This is about 6 double precision floating point results per CPU cycle

Amazing for 1 core of a 4 core CPU
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