
Data Structures

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Data structures

Data structures can implement an ordering to data
I A stack where the items are ordered by time of insertion and the

newest item is removed first
I A queue where the items are ordered by time of insertion and the

oldest item is removed first
I A priority queue where items are ordered by priority
I A binary tree where items are kept in order based on a key

Some data structures implement a “dictionary”
I Each item inserted has a “key”, like a person’s student id
I Information is stored with the key
I A hash table implements an efficient dictionary without maintaining an

ordering of keys
I A binary tree implements a dictionary keeping the keys in order

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Linked lists

2 Doubly linked lists

3 Hash tables

4 Binary trees

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Linked lists

12 4 16 19

list

A simple linked list is constructed of a sequence of structs

Each struct has some data and a pointer to the next item on the list

The filled circle means a pointer equal to NULL (0)

There needs to be some memory cell containing the first pointer

This list has no obvious order to the keys

It could be ordered by insertion time in two ways: by inserting at the
front or the end

It is easier to insert at the front, though the value of list will change
with each insertion

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

List node struct definition

struc node

n_value resq 1

n_next resq 1

align 8

endstruc

Using “align 8” insures that the size is a multiple of 8 bytes

This is not needed here since, both node items are quad words

It’s “defensive programming” to insert it now in case the definition
changes

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Creating an empty list

The only requirement will be to set the pointer to NULL

Having a function makes it possible to change later with less impact
on the rest of the program

newlist:

xor eax, eax

ret

...

call newlist

mov [list], rax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Inserting a number into a list

A new node will be allocated and placed at the start

We must pass the list pointer into the function

We also must receive a new pointer back to store in list

In C we would use

list = insert (list, k);

In assembly we would insert k using

mov rdi, [list] ; pass in the list pointer

mov rsi, [k]

call insert

mov [list], rax ; we have a new list pointer

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Insert code

insert:

.list equ 0

.k equ 8

push rbp

mov rbp, rsp

sub rsp, 16

mov [rsp+.list], rdi ; save list pointer

mov [rsp+.k], rsi ; and k on stack

mov edi, node_size

call malloc ; rax will be node pointer

mov r8, [rsp+.list] ; get list pointer

mov [rax+n_next], r8 ; save pointer in node

mov r9, [rsp+.k] ; get k

mov [rax+n_value], r9 ; save k in node

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Traversing the list

print:

push rbp

mov rbp, rsp

sub rsp, 16 ; subtract multiples of 16

mov [rsp], rbx ; save old value of rbx

cmp rdi, 0

je .done

mov rbx, rdi

.more lea rdi, [.print_fmt]

mov rsi, [rbx+n_value]

xor eax, eax

call printf

mov rbx, [rbx+n_next]

cmp rbx, 0

jne .more

.done lea rdi, [.newline]

xor eax, eax

call printf

mov rbx, [rsp] ; restore rbx

leave

ret64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Main program to build a list

main:

push rbp

mov rbp, rsp

sub rsp, 16

call newlist

mov [rsp+.list], rax ; .list equal to 0, not shown

.more lea rdi, [.scanf_fmt] ; .scanf_fmt not shown

lea rsi, [rsp+.k] ; .k equal to 8, not shown

xor eax, eax ; no floating point value parameters

call scanf

cmp rax, 1 ; quit it scanf does not return 1

jne .done

mov rdi, [rsp+.list] ; Get the list pointer

mov rsi, [rsp+.k] ; Get k

call insert

mov [rsp+.list], rax ; Save new list pointer

mov rdi, rax ; Move the pointer to be a parameter

call print

jmp .more ; Try to read another number

.done leave

ret64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Doubly linked lists

list

4 12 16 19X

This list uses forwards and backwards pointers to make a cycle

Also the first node is not used, so an empty list will have one node
and will be circular

The first node is called a “head” node

Using a head node and a circular list makes insertion trivial

You can also insert and remove from either end easily

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Doubly linked list node struct

struc node

n_value resq 1

n_next resq 1

n_prev resq 1

align 8

endstruc

An “empty” list is still circular

There are no special cases to consider

list

X

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Inserting at the front of a doubly linked list

list

X 7

1

2

3

4

The original links are dashed lines

Make the new node point forward to the head cell’s next

Make the new node point backward to the head cell

Make the head cell point forward to the new cell

Make the new cell’s next node point backward to the new cell

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Insertion function

; insert (list, k);

insert: push rbp

mov rbp, rsp

sub rsp, 16

mov [rsp+.list], rdi ; save list pointer, .list equ 0

mov [rsp+.k], rsi ; and k on stack, .k equ 8

mov edi, node_size

call malloc ; rax will be node pointer

mov r8, [rsp+.list] ; get list pointer

mov r9, [r8+n_next] ; get head’s next

mov [rax+n_next], r9 ; set new node’s next

mov [rax+n_prev], r8 ; set new node’s prev

mov [r8+n_next], rax ; set head’s next

mov [r9+n_prev], rax ; set new node’s next’s prev

mov r9, [rsp+.k] ; get k

mov [rax+n_value], r9 ; save k in node

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

List traversal

; print (list);

print: push rbp

mov rbp, rsp

sub rsp, 16

mov [rsp+.rbx], rbx ; save rbx, .rbx equ 0

mov [rsp+.list], rdi ; save list, .list equ 8

mov rbx, [rdi+n_next] ; skip the nead node

cmp rbx, [rsp+.list] ; is the list empty?

je .done

.more lea rdi, [.print_fmt] ; .print_fmt not shown

mov rsi, [rbx+n_value]

call printf ; print the node’s value

mov rbx, [rbx+n_next] ; advance to the next node

cmp rbx, [rsp+.list] ; have we reached the head cell?

jne .more

.done lea rdi, [.newline] ; .newline not shown

call printf

mov rbx, [rsp+.rbx] ; restore rbx

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Hash tables

For each key, compute a hash value

The hash value defines an index in an array to store the key

Collisions occur when 2 different keys hash to the same index

The simplest collision resolution is to use a linked list

12 4 16 19

13 8

21

22 5 11 15

8

7

6

5

4

3

2

1

0

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

A good hash function for integers

A good hash function spreads the keys around

Using k mod t where t is the table size is good

It could be bad if the keys are related to the table size

A good recommendation is to make t prime

In this example, t = 256, so using and works

; i = hash (n);

hash mov rax, rdi

and rax, 0xff

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

A good hash function for strings

The code below uses the characters of the string as coefficients of a
polynomial
The polynomial is evaluated at 191 (a prime)
Then a mod is done with 100000 to get the hash value
Assembly code is an exercise for the reader

int hash (unsigned char *s)

{

unsigned long h = 0;

int i = 0;

while (s[i]) {

h = h*191 + s[i];

i++;

}

return h % 100000;

}

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Hash node structure and array of pointers

The hash table has only 256 pointers

Usually the array would be larger and a creation function needed

segment .data

table times 256 dq 0 ; All NULL pointers

struc node

n_value resq 1

n_next resq 1 ; Singly linked list

align 8

endstruc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Function to find a key

; p = find (n);

; p = 0 if not found

find: push rbp

mov rbp, rsp

sub rsp, 16

mov [rsp], rdi ; save key

call hash

mov rax, [table+rax*8] ; get pointer

mov rdi, [rsp] ; get key

cmp rax, 0 ; empty list?

je .done

.more cmp rdi, [rax+n_value] ; key match?

je .done

mov rax, [rax+n_next] ; advance on the collision list

cmp rax, 0 ; end of list

jne .more

.done leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Function to insert a key

insert: push rbp

mov rbp, rsp

sub rsp, 16

mov [rsp+.n], rdi ; save n, .n equ 0

call find

cmp rax, 0 ; Is n already there?

jne .found

mov rdi, [rsp+.n] ; compute hash(n)

call hash

mov [rsp+.h], rax ; save hash value

mov rdi, node_size ; allocate a node

call malloc

mov r9, [rsp+.h] ; use r9 as index register

mov r8, [table+r9*8] ; get old pointer from table

mov [rax+n_next], r8 ; make new node point to old

mov r8, [rsp+.n] ; get n from the stack

mov [rax+n_value], r8 ; set the node value

mov [table+r9*8], rax ; make new node first on its list

.found leave

ret
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Testing the hash table

Need to examine print function

Need to examine main function

Test the program

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Binary trees

A binary tree is a hierarchy of nodes

There is a root node (or not, for an empty tree)

Each node can have a left child and a right child

The node structure has 2 pointers

Either or both pointers could be NULL

Binary trees are usually ordered like having all keys less the current
key in the left subtree

Such a tree is a “binary search tree”

struc node

n_value resq 1

n_left resq 1

n_right resq 1

align 8

endstruc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

A structure for the tree

We could represent an empty tree as a NULL pointer

This introduces special cases

Instead we implement a tree struct

It contains the root pointer which can be NULL

It also contains the count of nodes in the tree

After creating a tree, we use the same pointer for all function calls

struc tree

t_count resq 1

t_root resq 1

align 8

endstruc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Creating a new tree

The new tree function allocates a tree struct and sets it up as an
empty tree

new_tree:

push rbp

mov rbp, rsp

mov rdi, tree_size

call malloc

xor edi, edi

mov [rax+t_root], rdi

mov [rax+t_count], rdi

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Finding a node in a tree: p = find(t,n)

find: push rbp

mov rbp, rsp

mov rdi, [rdi+t_root]

xor eax, eax

.more cmp rdi, 0

je .done

cmp rsi, [rdi+n_value]

jl .goleft

jg .goright

mov rax, rsi

jmp .done

.goleft:

mov rdi, [rdi+n_left]

jmp .more

.goright:

mov rdi, [rdi+n_right]

jmp .more

.done leave

ret
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Inserting a node into a tree

The code is too long for a slide

First you check to see if the key is already in the tree

If not, then you create a new node and set it value and set its two
kids to NULL

There is a special case for an empty tree

If not empty, then we must traverse down the tree, going sometimes
left and sometimes right to find the right place to insert the new node

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Printing the keys in order

We first call a non-recursive function with the tree object

It calls a recursive function with the root node

; print(t);

print:

push rbp

mov rbp, rsp

mov rdi, [rdi+t_root]

call rec_print

segment .data

.print db 0x0a, 0

segment .text

lea rdi, [.print]

call printf

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Recursive print function: rec print(t)

rec_print: push rbp

mov rbp, rsp

sub rsp, 16 ; make room to save t

cmp rdi, 0 ; return if t is NULL

je .done

mov [rsp+.t], rdi ; save t, .t equ 0

mov rdi, [rdi+n_left] ; print the left sub-tree

call rec_print

mov rdi, [rsp+.t] ; print the current node

mov rsi, [rdi+n_value]

lea rdi, [.print] ; .print: format string

call printf

mov rdi, [rsp+.t] ; print the right sub-tree

mov rdi, [rdi+n_right]

call rec_print

.done leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Linked lists
	Doubly linked lists
	Hash tables
	Binary trees

