
Floating Point Instructions

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point instructions

PC floating point operations were once done in a separate chip - 8087

This chip managed a stack of eight 80 bit floating point values

The stack and instructions still exist, but are largely ignored

x86-64 CPUs have 16 floating point registers (128 or 256 bits)

These registers can be used for single data instructions or single
instruction multiple data instructions (SIMD)

We will focus on these newer registers

The older instructions tended to start with the letter “f” and
referenced the stack using register names like ST0

The newer instructions reference using registers with names like
“XMMO”

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 Moving data in and out of floating point registers

2 Addition

3 Subtraction

4 Basic floating point instructions

5 Data conversion

6 Floating point comparisons

7 Mathematical functions

8 Sample floating point code

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving scalars to or from floating point registers

movss moves a single 32 bit floating point value to or from an XMM

register

movsd moves a single 64 bit floating point value

There is no implicit data conversion - unlike the old instructions
which converted floating point data to an 80 bit internal format

The instructions follow the standard pattern of having possibly one
memory address

movss xmm0, [x] ; move value at x into xmm0

movsd [y], xmm1 ; move value from xmm1 to y

movss xmm2, xmm0 ; move from xmm0 to xmm2

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving packed data

The XMM registers are 128 bits

They can hold 4 floats or 2 doubles (or integers of various sizes)

On newer CPUs they are extended to 256 bits and referred to as YMM

registers when using all 256 bits

movaps moves 4 floats to/from a memory address aligned at a 16
byte boundary

movups does the same task with unaligned memory addresses

The Core i series performs unaligned moves efficiently

movapd moves 2 doubles to/from a memory address aligned at a 16
byte boundary

movupd does the same task with unaligned memory addresses

movups xmm0, [x] ; move 4 floats to xmm0

movupd [a], xmm15 ; move 2 doubles to a

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point addition

addss adds a scalar float (single precision) to another

addsd adds a scalar double to another

addps adds 4 floats to 4 floats - pairwise addition

addpd adds 2 doubles to 2 doubles

There are 2 operands: destination and source

The source can be memory or an XMM register

The destination must be an XMM register

Flags are unaffected

movss xmm0, [a] ; load a

addss xmm0, [b] ; add b to a

movss [c], xmm0 ; store sum in c

movapd xmm0, [a] ; load 2 doubles from a

addpd xmm0, [b] ; add a[0]+b[0] and a[1]+b[1]

movapd [c], xmm0 ; store 2 sums in c

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point subtraction

subss subtracts the source float from the destination

subsd subtracts the source double from the destination

subps subtracts 4 floats from 4 floats

subpd subtracts 2 doubles from 2 doubles

movss xmm0, [a] ; load a

subss xmm0, [b] ; add b from a

movss [c], xmm0 ; store a-b in c

movapd xmm0, [a] ; load 2 doubles from a

subpd xmm0, [b] ; add a[0]-b[0] and a[1]-b[1]

movapd [c], xmm0 ; store 2 differences in c

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Basic floating point instructions

instruction effect
addsd add scalar double
addss add scalar float
addpd add packed double
addps add packed float
subsd subtract scalar double
subss subtract scalar float
subpd subtract packed double
subps subtract packed float
mulsd multiply scalar double
mulss multiply scalar float
mulpd multiply packed double
mulps multiply packed float
divsd divide scalar double
divss divide scalar float
divpd divide packed double
divps divide packed float

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Conversion to a different length floating point

cvtss2sd converts a scalar single (float) to a scalar double

cvtps2pd converts 2 packed floats to 2 packed doubles

cvtsd2ss converts a scalar double to a scalar float

cvtpd2ps converts 2 packed doubles to 2 packed floats

cvtss2sd xmm0, [a] ; get a into xmm0 as a double

addsd xmm0, [b] ; add a double to a

cvtsd2ss xmm0, xmm0 ; convert to float

movss [c], xmm0

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Converting floating point to/from integer

cvtss2si converts a float to a double word or quad word integer

cvtsd2si converts a float to a double word or quad word integer

These 2 round the value

cvttss2si and cvttsd2si convert by truncation

cvtsi2ss converts an integer to a float in an XMM register

cvtsi2sd converts an integer to a double in an XMM register

When converting from memory a size qualifier is needed

cvtss2si eax, xmm0 ; convert to dword integer

cvtsi2sd xmm0, rax ; convert qword to double

cvtsi2sd xmm0, dword [x] ; convert dword integer

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Unordered versus ordered comparisons

Floating point comparisons can cause exceptions
Ordered comparisons cause exceptions one QNaN or SNaN

I QNaN means “quiet not a number”
I SNaN means “signalling not a number”
I Both have all exponent field bits set to 1
I QNaN has its top fraction bit equal to 1

An unordered comparison causes exceptions only for SNaN
gcc uses unordered comparisons
If it’s good enough for gcc, it’s good enough for me
ucomiss compares floats
ucomisd compares doubles
The first operand must be an XMM register
They set the zero flag, parity flag and carry flags

movss xmm0, [a]

mulss xmm0, [b]

ucomiss xmm0, [c]

jmple less_eq ; jmp if a*b <= c

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Mathematical functions

8087 had sine, cosine, arctangent and more

The newer instructions omit these operations on XMM registers

Instead you are supposed to use efficient library functions

There are instructions for
I Minimum
I Maximum
I Rounding
I Square root
I Reciprocal of square root

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Minimum and maximum

minss and maxss compute minimum or maximum of scalar floats

minsd and maxsd compute minimum or maximum of scalar doubles

The destination operand must be an XMM register

The source can be an XMM register or memory

minps and maxps compute minimum or maximum of packed floats

minpd and maxpd compute minimum or maximum of packed doubles

minps xmm0, xmm1 computes 4 minimums and places them in xmm0

movss xmm0, [x] ; move x into xmm0

maxss xmm0, [y] ; xmm0 has max(x,y)

movapd xmm0, [a] ; move a[0] and a[1] into xmm0

minpd xmm0, [b] ; xmm0[0] has min(a[0],b[0])

; xmm0[1] has min(a[1],b[1])

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Rounding

roundss rounds 1 float

roundps rounds 4 floats

roundsd rounds 1 double

roundpd rounds 2 doubles

The first operand is an XMM destination register

The second is the source in an XMM register or memory

The third operand is a rounding mode

mode meaning

0 round, giving ties to even numbers

1 round down

2 round up

3 round toward 0 (truncate)

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Square roots

sqrtss computes 1 float square root

sqrtps computes 4 float square roots

sqrtsd computes 1 double square root

sqrtpd computes 2 double square roots

The first operand is an XMM destination register

The second is the source in an XMM register or memory

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Distance in 3D

d =
√

((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2)

distance3d:

movss xmm0, [rdi] ; x from first point

subss xmm0, [rsi] ; subtract x from second point

mulss xmm0, xmm0 ; (x1-x2)^2

movss xmm1, [rdi+4] ; y from first point

subss xmm1, [rsi+4] ; subtract y from second point

mulss xmm1, xmm1 ; (y1-y2)^2

movss xmm2, [rdi+8] ; z from first point

subss xmm2, [rsi+8] ; subtract z from second point

mulss xmm2, xmm2 ; (z1-z2)^2

addss xmm0, xmm1 ; add x and y parts

addss xmm0, xmm2 ; add z part

sqrt xmm0, xmm0

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Dot product in 3D

d = x1x2 + y1y2 + z1z2

dot_product:

movss xmm0, [rdi]

mulss xmm0, [rsi]

movss xmm1, [rdi+4]

mulss xmm1, [rsi+4]

addss xmm0, xmm1

movss xmm2, [rdi+8]

mulss xmm2, [rsi+8]

addss xmm0, xmm2

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Polynomial evaluation by Horner’s Rule

P(x) = p0 + p1x + p2x
2 · · · pnxn

bn = pn

bn−1 = pn−1 + bnx

bn−2 = pn−2 + bn−1x

b0 = p0 + b1x

horner: movsd xmm1, xmm0 ; use xmm1 as x

movsd xmm0, [rdi+rsi*8] ; accumulator for b_k

test esi, 0 ; is the degree 0?

jz done

more: sub esi, 1

mulsd xmm0, xmm1 ; b_k * x

addsd xmm0, [rdi+rsi*8] ; add p_k

jnz more

done: ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	Moving data in and out of floating point registers
	Addition
	Subtraction
	Basic floating point instructions
	Data conversion
	Floating point comparisons
	Mathematical functions
	Sample floating point code

