
Arrays

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Arrays

An array is a contiguous collection of memory cells of a specific type

The start address of an array is the address of the first element

This is associated with the label given before a data definition in the
data segment or a data reservation in the bss segment

The first index of an array in C/C++ and assembly is 0

Each subsequent array cell is at a higher memory address

The final index for an array of n elements is n − 1

Some high level languages use different or user-selectable starting
indices for arrays

Fortran defaults to 1

0 is the most logical first index because it simplifies array address
computation

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Array address computation

2 General pattern for memory references

3 Allocating arrays

4 Processing arrays

5 Command line parameter array

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Array address computation

Array elements all have the same size: 1, 2, 4 and 8 are common

Suppose an array has elements of size 4 and starts at address
0x10000

I The first element (at index 0) is at 0x10000
I The second element (at index 1) is at 0x10004
I The third element (at index 2) is at 0x10008
I Element number k is at address 0x10000 + k*4

Let’s examine the arrays for program “array.asm” with gdb or ebe

segment .bss

a resb 100

b resd 100

align 8

c resq 100

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

General pattern for memory references

[label] the value contained at label
[label+2*ind] the value contained at the memory address obtained

by adding the label and index register times 2
[label+4*ind] the value contained at the memory address obtained

by adding the label and index register times 4
[label+8*ind] the value contained at the memory address obtained

by adding the label and index register times 8
[reg] the value contained at the memory address in the register
[reg+k*ind] the value contained at the memory address obtained

by adding the register and index register times k
[label+reg+k*ind] the value contained at the memory address obtained

by adding the label, the register and index register times k
[n+reg+k*ind] the value contained at the memory address obtained

by adding n, the register and index register times k

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Memory references

For items in the data and bss segments we can use a label

For arrays passed into functions the address is passed in a register

Soon we will be allocating memory using malloc
I This address will typically be stored in memory
I Later to use the data, we must load the address from memory into a

register
I Then we can use a register form of memory reference

The use of a number or a label is equivalent to the computer

Both use the same instruction and place the number or label value
into the same field of the instruction

Using multipliers of 2, 4 or 8 are essentially “free” with index registers

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Example using base registers and an index register

In the function below the first parameter is the address of the first
dword of a destination array
The second parameter is the address of the source array
The third parameter is the number of dwords to copy
It would generally be faster to use “rep movsd”

segment .text

global copy_array

copy_array:

xor ecx, ecx

more: mov eax, [rsi+4*rcx]

mov [rdi+4*rcx], eax

add rcx, 1

test rcx, rdx

jne more

xor eax, eax

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Allocating arrays

We will allocate arrays using the C malloc function

void *malloc (long size);

The parameter to malloc is the number of bytes to allocate

malloc returns the address of the array or 0

Data allocated should be freed, although this will happen when a
program exits

void free (void *ptr);

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Code to allocate an array

The code below allocates an array of 1 billion bytes

It saves the pointer to the new array in memory location named
pointer

extern malloc

...

mov rdi, 1000000000

call malloc

mov [pointer], rax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Advantages for using allocated arrays

The array will be the right size

There are size limits of about 2 GB in the data and bss segments

The assembler is very slow with large arrays and the program is large

Assembling a program with a 2 GB array in the bss segment took
about 100 seconds

The executable was over 2 GB

Using malloc the program assembles in less than 1 second and the
program as about 10 KB

Modified to allocate 20 billion bytes the program executes in 3
milliseconds

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Processing arrays

We present an application which creates an array

Fills the array with random data by calling random

Prints the array if the size is small (up to 20 elements)

Determines the minimum value in the array

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Creating an array

This function allocates an array of double words

The number of double words is the only parameter

Note the use of a stack frame to avoid any problems of stack
misalignment

; array = create (size);

create:

push rbp

mov rbp, rsp

imul rdi, 4

call malloc

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Filling the array with random numbers

fill:

.array equ 0

.size equ 8

.i equ 16

push rbp

mov rbp, rsp

sub rsp, 32

mov [rsp+.array], rdi

mov [rsp+.size], rsi

xor ecx, ecx

.more mov [rsp+.i], rcx

call random

mov rcx, [rsp+.i]

mov rdi, [rsp+.array]

mov [rdi+rcx*4], eax

inc rcx

cmp rcx, [rsp+.size]

jl .more

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Local labels in yasm

Labels beginning with a dot are local labels

They are considered part of the previous normal label

The .more label could be referenced as fill.more from outside the
fill function

The fill function keeps saving rcx on the stack and restoring rcx

and rdi around the random call

This could be easier to code using registers which are preserved across
calls

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Filling the array with random numbers (2)

fill:

.r12 equ 0

.r13 equ 8

.r14 equ 16

push rbp

mov rbp, rsp

sub rsp, 32

mov [rsp+.r12], r12

mov [rsp+.r13], r13

mov [rsp+.r14], r14

mov r12, rdi ; r12 is the array address

mov r13, rsi ; r13 is the size

xor r14d, r14d ; loop counter

.more call random

mov [r12+r14*4], eax

inc r14

cmp r14, r13

jl .more

mov r12, [rsp+.r12]

mov r13, [rsp+.r13]

mov r14, [rsp+.r14]

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Printing the array

print:

.array equ 0

.size equ 8

.i equ 16

...

segment .data

.format:

db "%10d",0x0a,0

segment .text

.more lea rdi, [.format]

mov rdx, [rsp+.array]

mov rcx, [rsp+.i]

mov rsi, [rdx+rcx*4]

mov [rsp+.i], rcx

call printf

mov rcx, [rsp+.i]

inc rcx

mov [rsp+.i], rcx

cmp rcx, [rsp+.size]

jl .more

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Finding the minimum value in the array

This function calls no other function

There is no need for a stack frame

A conditional move is faster than branching

; x = min (a, size);

min:

mov eax, [rdi] ; start with a[0]

mov rcx, 1

.more mov r8d, [rdi+rcx*4] ; get a[i]

cmp r8d, eax

cmovl eax, r8d ; move if smaller

inc rcx

cmp rcx, rsi

jl .more

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

The main program and testing

The code is too long, so we will inspect it in an editor

It’s also time to test with gdb or ebe

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Command line parameter array

The first argument to main is the number of command line
parameters

The second argument is the address of an array of character pointers,
each pointing to one of the parameters

Below is a C program illustrating the use of command line parameters

#include <stdio.h>

int main (int argc, char *argv[])

{

int i;

for (i = 0; i < argc; i++) {

printf("%s\n", argv[i]);

}

return 0;

}

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Assembly program listing command line parameters

segment .data

format db "%s",0x0a,0

segment .text

global main ; let the linker know about main

extern printf ; resolve printf from libc

main: push rbp ; prepare stack frame for main

mov rbp, rsp

sub rsp, 16

mov rcx, rsi ; move argv to rcx

mov rsi, [rcx] ; get first argv string

start_loop:

lea rdi, [format]

mov [rsp], rcx ; save argv

call printf

mov rcx, [rsp] ; restore rsi

add rcx, 8 ; advance to next pointer in argv

mov rsi, [rcx] ; get next argv string

cmp rsi, 0

jnz start_loop ; end with NULL pointer

end_loop:

xor eax, eax

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Array address computation
	General pattern for memory references
	Allocating arrays
	Processing arrays
	Command line parameter array

