
Functions

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Functions

We will write C compatible function

C++ can also call C functions using “extern "C" {...}”

It is generally not sensible to write complete assembly programs
I About 10% of your program uses 90% of the time
I The compiler does an excellent job of code generation
I Writing about 10% of your application in assembly might be worth

doing if you can take advantage of instructions like SSE or AVX

We will write functions which can be called from C

We will also take advantage of C library functions
I malloc to allocate memory
I scanf to read data
I printf to print data

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 The stack

2 The call instruction

3 The return instruction

4 Function parameters

5 Stack frames

6 Recursion

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The stack

The run-time stack is a region of memory which is used for a variety
of temporary storage needs

It starts with a high address of 0x7fffa6b79000 for my bash process

It can be used for temporary storage of partially computed expressions

It is used for some of the parameters to functions

It is used for local variables in C/C++ functions

It is used to store the address to return to after completing a function
call

The push instruction decrements the rsp register and stores the
value being pushed at this address

The pop instruction places the value at the top of the stack into its
operand and increments rsp

With the x86-64 instructions you should push and pop 8 bytes at a
time

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Initial stack setup

The operating system starts a process by creating a stack with
possibly randomly selected starting addresses
Then it places a variety of data items into the stack.
Finally it transfer to start (not really a call)
The parameters to start are placed on the stack.
The first parameter (last pushed on the stack) in the number of
command line parameters
The second parameter is the address of the string (on the stack)
which is the first command line parameter (program name)
These command line parameters continue and end with a 0 value on
the stack.
Above this point on the stack are addresses of the strings which
constitute the environment

I Strings like "USER=seyfarth"
I Or "PATH=/bin:/usr/bin:/usr/local/bin" with multiple parts
I All these variables were contained in the starting process
I A child process inherits an environment

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The call instruction

After preparing any parameters you call a function this way

call my_function

my function should be an appropriate address in the code segment

The function’s return value will be in rax or xmm0

The effect of a function call is much like

push next_instruction

jmp my_function

next_instruction:

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The return instruction

The effect of the return instruction (ret) is to pop an address off the
stack and branch to it

We could get much the same effect using

pop rdi

jmp rdi

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Function parameters

On 32 bit Linux all parameters were pushed onto the stack

On x86-64 there are 8 more registers, so some parameters are passed
in registers.

Linux and Mac OS/X pass integer and address parameters 1 through
6 in rdi, rsi, rdx, rcx, r8 and r9

The remaining integer and address parameters are pushed onto the
stack

The first 6 floating point parameters are passed in registers xmm0 -
xmm5

The remaining floating point parameters are passed on the stack

Windows uses registers rcx, rdx, r8 and r9 for the first 4 integer and
address parameters and pushes the rest

Windows uses xmm0 - xmm3

In all cases pushed parameters are pushed in reverse order

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Function parameters (2)

Functions like printf having a variable number of parameters must
place the number of floating point parameters in rax

Both Linux and Windows require the maintenance of the stack on 16
byte boundaries during the main part of functions

The reason behind this requirement is to make it possible for local
variables (on the stack) to be on 16 byte boundaries, a requirement
for some SSE and AVX instructions

Conforming functions generally start with “push rbp” re-establishes
the 15 byte bounding temporarily botched by the function call

Following that conforming functions subtract multiple of 16 from rsp

to allocate stack space or push pairs of 8 byte values

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Hello world, at last

section .data

msg: db "Hello World!",0x0a,0

section .text

global main

extern printf

main:

push rbp

mov rbp, rsp

lea rdi, [msg] ; parameter 1 for printf

xor eax, eax ; 0 floating point parameters

call printf

xor eax, eax ; return 0

pop rbp

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Stack frames

Stack frames are used by the gdb debugger to trace backwards
through the stack to inspect calls make in a process
The set of stack frames is accessible using the rbp register which
contains the previous value of rsp
At the previous rsp location is stored the old value of rbp for the
previous function
Just above the previous rbp is the return address
The rbp addresses give a linked list of stack frames which works great
with the backtrace or bt command in gdb

Your functions should look like

push rbp

mov rbp, rsp

sub rsp, multiple_of_16

...

leave ; undoes the first 3 instructions

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Symbolic names for local variables

Local variables in a function are at rsp and above
Use the equ pseudo-op to give names to their offsets relative to rsp

a equ 0

b equ 8

c equ 16

d equ 24

push rbp

mov rbp, rsp

sub rsp, 32

mov [rsp+a], rdi ; stores the first parameter in a

mov [rsp+b], rsi ; save the second parameter

mov rdi, 16

call malloc

mov [rsp+d], rax ; save address returned by malloc

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Register preservation

For Linux a function must preserve registers rbx, rbp, and r12-r15

Try to dodge them, but if you need them place them in local variables
on the stack first and restore before you leave

It can be a relief to use these registers since they will still be available
to you after a function call

Windows functions must preserve registers rbx, rbp, rsi, rdi and
r12-r15

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Recursion

A recursive function calls itself (perhaps indirectly)

Using proper stack frames can help in debugging, especially with
recursion

Recursive solutions involve breaking a big problem into smaller
problems, solving the smaller problems and building a complete
solution from the sub-solutions

If you break a problem up enough it generally becomes obvious how
to solve it

Perhaps you are defining a recursive sum of array elements. When you
get down to 0 array elements it is easy to solve.

These easy cases are called “base cases”

A recursive function begins by checking if it is being asked to solve a
base case

If so, then it produces an immediate solution

If not, then it applies recursion on sub-problems

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Recursive factorial function

fact: ; recursive function

n equ 8

push rbp

mov rbp, rsp

sub rsp, 16 ; make room for storing n

cmp rdi, 1 ; compare argument with 1

jg greater ; if n <= 1, return 1

mov eax, 1 ; set return value to 1

leave

ret

greater:

mov [rsp+n], rdi ; save n

dec rdi ; call fact with n-1

call fact

mov rdi, [rsp+n] ; restore original n

imul rax, rdi ; multiply fact(n-1)*n

leave

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	The stack
	The call instruction
	The return instruction
	Function parameters
	Stack frames
	Recursion

