
A Little Bit of Math

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 Negation

2 Addition

3 Subtraction

4 Multiplication

5 Division

6 Conditional move instructions

7 Why use a register?

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



A little bit of math

So far we have learned how to get values into registers

And how to place them back into memory

Just some ordinary arithmetic can help us write slightly more useful
programs

This chapter discusses only integer math

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Negation

The negate instruction, neg, converts a number to its two’s
complement

neg sets the sign and zero flags

There is only a single operand which is source and destination

For memory operands you must include a size prefix

The sizes are byte, word, dword and qword

neg rax ; negate the value in rax

neg dword [x] ; negate a 4 byte integer at x

neg byte [x] ; negate a byte at x

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The add instruction

The add instruction always has exactly 2 operands

It adds its source value to its destination

The source can be immediate, a register or a memory location

The destination can be a register or a memory location

Using memory locations for both source and destination is not allowed

It sets (or clears) the sign flag, the zero flag and the overflow flag

Some other flags are set related to binary-coded decimal arithmetic

There is no special “signed add” versus “unsigned add” since the
logic is identical

There is a special 1 operand increment instruction, inc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



A program using add

segment .data

a dq 151

b dq 310

sum dq 0

segment .text

global main

main:

mov rax, 9 ; set rax to 9

add [a], rax ; add rax to a

mov rax, [b] ; get b into rax

add rax, 10 ; add 10 to rax

add rax, [a] ; add the contents of a

mov [sum], rax ; save the sum in sum

mov rax, 0

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The subtract instruction

The sub instruction performs integer subtraction

Like add it supports 2 operands

Only one of the operands can be a memory operand

There is a “subtract one” instruction, dec

It sets the sign flag, the zero flag and the overflow flag

There is no special “signed subtract” versus “unsigned subtract”
since the logic is identical

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



A program using sub

segment .data

a dq 100

b dq 200

diff dq 0

segment .text

global main

main:

mov rax, 10

sub [a], rax ; subtract 10 from a

sub [b], rax ; subtract 10 from b

mov rax, [b] ; move b into rax

sub rax, [a] ; set rax to b-a

mov [diff], rax ; move the difference to diff

mov rax, 0

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Multiplication

Unsigned multiplication is done using the mul instruction

Signed multiplication is done using imul

There is only 1 form for mul
I It uses 1 operand, the source operand
I The other factor is in rax, eax, ax or al
I The destination is ax for byte multiplies
I Otherwise the product is in rdx:rax, edx:eax, or dx:ax

mov rax, [a]

mul qword [b] ; a * b will be in rdx:rax

mov eax, [c]

mul dword [d] ; c * d will be in edx:eax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Signed multiplication

imul has a single operand form just like mul

It also has a 2 operand form, source and destination, like add and sub

Finally there is a 3 operand form: destination, source and immediate
source

If you need all 127 bits of product, use the single operand form

imul rax, 100 ; multiply rax by 100

imul r8, [x] ; multiply rax by x

imul r9, r10 ; multiply r9 by r10

imul r8, r9, 11 ; store r9 * 11 in r8

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Division

Division returns a quotient and a remainder

It also has signed (idiv) and unsigned forms (div)

In both forms the dividend is stored in rdx:rax or parts thereof

The quotient is stored in rax

The remainder is stored in rdx

No flags are set

mov rax, [x] ; x will be the dividend

mov rax, 0 ; 0 out rax, so rdx:rax == rax

idiv [y] ; divide by y

mov [quot], rax ; store the quotient

mov [rem], rdx ; store the remainder

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Conditional move instructions

There are many variants of conditional move, cmovCC, where CC is a
condition like l for less

These are great for simple conditionals

You can avoid interrupting the instruction pipeline

Instruction effect

cmovz move if zero flag set

cmovnz move if zero flag not set (not zero)

cmovl move if result was negative

cmovle move if result was negative or zero

cmovg move if result was positive

cmovge result was positive or zero

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Conditional move examples

Here is some code to compute absolute value

mov rbx, rax ; save original value

neg rax ; negate rax

cmovl rax, rbx ; replace rax if negative

The code below loads a number from memory, subtracts 100 and
replaces the difference with 0 if the difference is negative

mov rbx, 0 ; set rbx to 0

mov rax, [x] ; get x from memory

add rax, 100 ; subtract 100 from x

cmovl rax, rbx ; set rax to 0 if rax was negative

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Why use a register?

Don’t use a register if a value is needed for 1 instruction

Don’t worry about it for things which execute infrequently

Use registers instead of memory for instructions which execute
enough to matter

If you are writing a program for a class and efficiency is not part of
the grade, pick the clearest way to write the code

With so many registers, it can create opportunities for efficiency at
the cost of clarity

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	Negation
	Addition
	Subtraction
	Multiplication
	Division
	Conditional move instructions
	Why use a register?

