Registers J

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Outline

© Register basics

o Moving a constant into a register

© Moving a value from memory into a register
@ Moving values from a register into memory

© Moving data from one register to another

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Register basics

Computer main memory has a latency of about 80 nanoseconds
A 3.3 GHz CPU uses approximately 0.3 nsecs per cycle

Memory latency is about 240 cycles
The Core i7 has 3 levels of cache with different latencies

> Level 3 about 48 nsec latency or about 150 cycles
> Level 2 about 10 nsec latency or about 39 cycles
> Level 1 about 4 nsec latency or about 12 cycles

There is a need for even faster memory

This ultra-fast “memory” is the CPU's registers

Some register-register instructions complete in 1 cycle

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



x86-64 registers

CPUs running in x86-64 mode have 16 general purpose registers
There are also 16 floating point registers (XMM0-XMM15)
There is also a floating point register stack which we ignore

The general purpose registers hold 64 bits
The floating point registers can be either 128 or 256 bits

» The CPU can use them to do 1 32 bit or 1 64 bit floating point
operation in an instruction

» The CPU can also use these to do packed operations on multiple
integer or floating point values in an instruction

» “Single Instruction Multiple Data” - SIMD

The CPU has a 64 bit instruction pointer register - rip

There is a 64 bit flags register, rflags, holding status values like
whether the last comparison was positive, zero or negative



General purpose registers

@ These registers evolved from 16 bit CPUs to 32 bit mode and finally
64 bit mode

@ Each advance has maintained compatibility with the old instructions
@ The old register names still work

@ The old collection was 8 registers which were not entirely general
purpose

@ The 64 bit collection added 8 completely general purpose 64 bit
registers named r8 - ri5

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



The 64 bit registers evolved from the original 8

Software uses the “r’ names for 64 bit use, the "€’ names for 32 bit
use and the original names for 16 bit use
@ rax - general purpose, accumulator

» rax uses all 64 bits
» eax uses the low 32 bits
» ax uses the low 16 bits

rbx, ebx, bx - general purpose

rcx, ecx, cx - general purpose, count register
rdx, edx, dx - general purpose

rdi, edi, di - general purpose, destination index
rsi, esi, si - general purpose, source index

rbp, ebp, bp - general purpose, stack frame base pointer

rsp, esp, sp - stack pointer, rsp is used to push and pop

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



The original 8 registers as bytes

@ Kept from the 16 bit mode
al is the low byte of ax, ah is the high byte
> bx can be used as bl and bh
» cx can be used as cl and ch
> dx can be used as d1 and dh
o New to x86-64
dil for low byte of rdi
sil for low byte of rsi
bpl for low byte of rbp (probably useless)
spl for low byte of rsp (probably useless)

v

vV vy VvVYy

@ There is no special way to access any “higher” bytes of registers

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



The 8 new general purpose registers as smaller registers

Here the naming convention changes

Appending “d" to a register accesses its low double word - r8d

[T 1]

Appending “w" to a register accesses its low word - r12w

Appending “b" to a register accesses its low byte - r15b

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Moving a constant into a register

Moving is fundamental
yasm uses the mnemonic mov for all sorts of moves
The code from gcc uses mnemonics like movq

Most instructions use 1, 2 or 4 byte immediate fields

mov can use an 8 byte immediate value

mov rax, 0x0123456789abcdef ; can move 8 byte immediates
mov rax, O

mov eax, O ; the upper half is set to O
mov r8w, 16 ; affects only low word

@ Time to try some movs using gdb

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Moving a value from memory into a register

segment .data

a dq 175

b dq 4097

c db 1, 2, 3, 4

d dd Oxffffffff
segment .code
mov rax, a
mov rbx, [a]
mov rcx, [c]
mov edx, [c]

@ Using simply a places the address of a into rax
@ Using [a] places the value of a into rbx
@ mov rcx, [c] makes rcx = 0x01020304fFfFfFff
@ mov edx, [c] makes rdx = 0x01020304

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Moving a value from memory into a register (2)

@ The from memory mov instruction has a 32 bit immediate field
@ This is where the address is placed

@ This means using addresses greater than 4 GB requires getting the
address into a register rather than using the immediate field

@ There is a special 64 bit form, but generally you will not have a 64 bit
immediate address

@ The register name defines the number of bytes moved
@ mov rax, a is really a “move constant” instruction

@ mov rax, [al] isa "move from memory” instruction

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



A program to add 2 numbers from memory

segment .data
a dq 175
b dg 4097
segment .text
global main

main:
mov rax, [a] ; mov a into rax
add rax, [b] ; add b to rax
xor eax, eax
ret

e Time to try this with gdb
@ You will see that gdb thinks variables are double word integers

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Move with sign extend or zero extend

@ If you move a double word into a double word register, the upper half
is zeroed out

o If you move a 32 bit immediate into a 64 bit register it is sign
extended

@ Sometimes you might wish to load a smaller value from memory and
fill the rest of the register with zeroes

@ Or you may wish to sign extend a small value from memory

@ For movsx and movzx you need a size qualifier for the memory

operand
movsx rax, byte [datal ; move byte, sign extend
movzx rbx, word [sum] ; move word, zero extend
movsx rcx, dword [count] ; move dword, sign extend

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Moving values from a register into memory

@ Simply use the memory reference as the first operand

mov [a], rax ; move a quad word to a
mov [b], ebx ; move a double word to b
mov [c], r8w ; move a word to ¢

mov [d], ri5b ; move a byte to d

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



Moving data from one register to another

o Use 2 register operands

mov rax, rbx ; move rbx to rax

mov eax, ecx ; move ecx to eax, zero filled

mov cl, al ; move al to cl, leave rest of
; unchanged

64 Bit Intel Assembly Language (©2011 Ray Seyfarth



	Register basics
	Moving a constant into a register
	Moving a value from memory into a register
	Moving values from a register into memory
	Moving data from one register to another

