
Numbers

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 Binary numbers

2 Hexadecimal numbers

3 Integers

4 Floating point numbers

5 Converting decimal numbers to floats

6 Floating point mathematics

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Binary numbers

Decimal place value system

15301201 = 1 ∗ 107 + 5 ∗ 106 + 3 ∗ 105 + 103 + 2 ∗ 102 + 1

= 10000000 + 5000000 + 300000 + 1000 + 200 + 1

= 15301201

Binary place value system

10101111 = 27 + 25 + 23 + 22 + 2 + 1

= 128 + 32 + 8 + 4 + 2 + 1

= 175

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Bit numbering

bit value

4 3 2 1 0

01 1 1 1 10 1

567bit position

The least significant bit of a byte is bit 0

The most significant bit is bit 7

In yasm this number could be written as 10101111b

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Decimal to binary conversion

Convert 741 to binary

Repeatedly divide by 2 and keep the remainders

division remainder bits
741/2 = 370 1 1
370/2 = 185 0 01
185/2 = 92 1 101

92/2 = 46 0 0101
46/2 = 23 0 00101
23/2 = 11 1 100101
11/2 = 5 1 1100101

5/2 = 2 1 11100101
2/2 = 1 0 011100101
1/2 = 0 1 1011100101

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Hexadecimal numbers

Base 16 numbers

Use as “digits” 0-9 and A-F (or a-f)

A=10, B=11, C=12, D=13, E=14, F=15

0x2b1a = 2 ∗ 163 + 11 ∗ 162 + 1 ∗ 16 + 10

= 2 ∗ 4096 + 11 ∗ 256 + 16 + 10

= 8192 + 2816 + 16 + 10

= 11034

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Why use hexadecimal?

Each hexadecimal digit or “nibble” is 4 bits

0x2b1a = 0010 1011 0001 1010

0x2b1a = 0010101100011010b

Counting 32 bits for a binary pattern would be hard

Hexadecimal is much easier

0xdeadbeef = 11011110101011011011111011101111b

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Converting decimal to hexadecimal

Convert 40007 to hexadecimal

Repeatedly divide by 16 and keep the remainders

division remainder hex
40007/16 = 2500 7 7

2500/16 = 156 4 47

156/16 = 9 12 c47

9/16 = 0 9 9c47

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Integers

Integers can be 1, 2, 4 or 8 bytes long

They can be signed or unsigned

Variety Bits Bytes Minimum Maximum
unsigned 8 1 0 255

signed 8 1 -128 127
unsigned 16 2 0 65535

signed 16 2 -32768 32767
unsigned 32 4 0 4294967295

signed 32 4 -2147483648 2147483647
unsigned 64 8 0 18446744073709551615

signed 64 8 -9223372036854775808 9223372036854775807

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Negative integers

We use the highest-order bit as a sign bit

1 for a sign bit means a negative number

If we stored -1 as 10000001b

-1 + 1 would be 10000001b + 00000001b = 100000010b

Then addition would yield -1 + 1 = -2

There must be a better way to store negatives

Hopefully, we can use the same circuitry for positives and negatives

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Two’s complement integers

To convert a number to its negative, use two’s complement

Flip all the bits

Add 1

Let’s convert 1 to -1 with 8 bit numbers

00000001 for the absolute value

11111110 for the complement

11111111 after adding 1 to the complement

-1 = 11111111

Two’s complement negative numbers work for addition

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



More 8 bit signed integers

They form a cycle if you keep adding 1

00000000 = 0

00000001 = 1

00000010 = 2

...

01111111 = 127

10000000 = -128

10000001 = -127

10000010 = -126

...

11111110 = -2

11111111 = -1

00000000 = 0

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Addition

Let’s convert and add -29124 + 125

29124 = 0111000111000100

Negate = 1000111000111011

Add 1 = 1000111000111100

125 = 0000000001111101

Now add 1000111000111100

0000000001111101

----------------

1000111010111001

Negate 0111000101000110

Add 1 0111000101000111

28999

So -29124 + 125 = -28999

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Binary multiplication

1010101

* 10101

1010101

1010101

1010101

11011111001

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point numbers

32 bit, 64 bit and 80 bit numbers

Stored in IEEE 754 format

Variety Bits Exponent Exponent Bias Fraction Precision

float 32 8 127 23 ∼7 digits

double 64 11 1023 52 ∼16 digits

long double 80 15 16383 64 19 digits

Exponents are binary exponents

An exponent field has the bias added

A 32 bit exponent field of 128 means a binary exponent 1

A 32 bit exponent field of 125 means a binary exponent -2

0.0 is stored as all bits equal to 0

Exponent field 255 means “Not a Number”

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Binary numbers with binary points

0.12 = 2−1

= 0.5

1.112 = 1 + 2−1 + 2−2

= 1 + 0.5 + 0.25

= 1.75

1001.10012 = 23 + 1 + 2−1 + 2−4

= 8 + 1 + 0.5 + 0.0625

= 9.5625

1.0010101 ∗ 23 = 1001.0101

= 23 + 1 + 2−2 + 2−4

= 8 + 1 + 0.25 + 0.0625

= 9.3125

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Implicit 1 bit

31 020 2223

valueexponentsign bit

Normalized floats have exponent fields from 1 to 254

For these floats there will be at least one 1 bit in the number

IEEE 754 uses implicit 1 bits

For non-zero floats, they can be written in “scientific” notation
I 1011.10101 = 1.01110101 ∗ 23

I The leading 1 bit is not stored
I The value (fraction) field is 01110101000000000000000

So we have 23 bits of fraction with 1 implicit bit = 24 bits

The sign bit is flipped to negate a float (1 means negative)

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point storage

Consider consider this listing by yasm

1 %line 1+1 fp.asm

2 [section .data]

3 00000000 00000000 zero dd 0.0

4 00000004 0000803F one dd 1.0

5 00000008 000080BF neg1 dd -1.0

6 0000000C 0000E03F a dd 1.75

7 00000010 0000F542 b dd 122.5

8 00000014 CDCC8C3F d dd 1.1

9 00000018 F9021550 e dd 10000000000.0

The bytes are backwards

1.0 should be represented logically as 3F800000

0 sign bit, 127 exponent field, 0 for the fraction field

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point storage (2)

4 00000004 0000803F one dd 1.0

5 00000008 000080BF neg1 dd -1.0

6 0000000C 0000E03F a dd 1.75

7 00000010 0000F542 b dd 122.5

All these have a lot of 0 bits in the fractions

They are all exactly equal to a sum of a few powers of 2

1 = 20

1.75 = 20 + 2−1 + 2−2

122.5 = 26 + 25 + 24 + 23 + 21 + 2−1

-1.0 differs from 1.0 only in the sign bit

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point storage (3)

8 00000014 CDCC8C3F d dd 1.1

1.1 is a repeating binary number

The number in “proper” order is 3F8CCCCD

The exponent field is 127, so the exponent is 1

The number is 1.000110011001100110011012

It looks like 1.1 = 1.0001100

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Converting decimal numbers to floats

Determine the sign bit and work with the absolute value

Convert the whole part of the decimal number

Convert the fraction

Express in binary scientific notation

Build the exponent field by adding 127 bias

Drop the leading 1 to get the fraction field

Example: convert -12.25
I Sign bit is 1
I Whole part is 12 = 11002

I Fraction is 0.25 = 0.01
I Scientific notation 12.25 = 1.100012 ∗ 23

−12.25 = 1 10000010 10001000000000000000000

= 0xC1440000

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Converting decimal number to float (2)

The only non-obvious step is converting the fractional part to a binary
fraction.

Suppose you have a decimal number x = .abcdefgh

Then if you multiple x by 2, the only possible result is 2x < 1 or
1 ≤ 2x < 2

If 2x < 1, then x < 0.5, which means the first bit after the binary
point is 0.

If 2x ≥ 1, then x ≥ 0.5, which means the first bit after the binary
point is 1.

So we set the first bit and work on the remaining fractional part of 2x
to get the next bit.

This process continues until we reach x = 0 or we have enough bits.

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Converting decimal number to float (3)

Let’s convert −121.6875 to a binary number

First the sign is 0

121 = 11110012

Now it’s time to work on .6875

Multiply Result Binary
.6875 ∗ 2 = 1.375 .12
.375 ∗ 2 = 0.75 .102
.75 ∗ 2 = 1.5 .1012
.5 ∗ 2 = 1.0 .10112

−121.6875 = −1111001.10112

−121.6875 = −1.11100110112 ∗ 26

As a binary float 1 10000101 11100110110000000000000

Expressed in hexadecimal: 0xC2F36000

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point addition

Let’s add 41.275 and 0.315

41.275 = 101001.010001100110011010 in binary

0.325 = 0.0101000010100011110101110 in binary

As with decimals, we align the numbers and add

101001.010001100110011010

+ 0.0101000010100011110101110

101001.1001011100001010010101110

There are 31 digits in the answer

The answer must be rounded to 24 bits

Rounding the last 7 bits means truncation in this case

We get 0x42265c29 which is 41.59 (approximately)

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Floating point multiplication

Let’s multiply 7.5 and 4.375

7.5 = 111.12
* 4.375 = 100.0112

11112
111102

1111000002
100000.11012

Conversion to float format should be apparent by now

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	Binary numbers
	Hexadecimal numbers
	Integers
	Floating point numbers
	Converting decimal numbers to floats
	Floating point mathematics

